Ultrafine Particles at 4 Stations in Europe

EU-LIFE-Project-UFIPOLNET

H. Gerwig^a, G. Löschau^a, L. Hillemann^a, A. Rudolph^b, A. Zschoppe^b, C. Peters^b, J. Cyrys^c, R. Rückerl^c, C. Johansson^d, J. Novák^e, H. Horn^f, R. Caldow^f, G. Sem^f, B. Wehner^g, A. Wiedensohler^g

WHY ULTRAFINE PARTICLES?

- High concentrations of ultrafine particles in ambient air cause heart attacks and premature deaths.
- These ultrafine particles have a diameter of less than 100 nanometers.
- Being so small, they can be inhaled and travel via the blood stream to the inner organs.
- Ultrafine particles are measured regularly in only a few measuring stations in Europe.
- The WHO and the EU Thematic Strategy on Air Pollution asks to evaluate more research on ultrafine particles as indicator of traffic-related air pollution.

Fig. 2 Dresden: UFP 330, TOPAS (middle) and reference instrument twin-DMPS, IFT (right)

OBJECTIVES

- Measuring instrument for ultrafine particle size distributions (UFP 330 by TOPAS GmbH)
 - Affordable and easy to use under routine measuring network conditions
 - •No butanol or radioactivity
 - •6 different size classes (K1 K6) >20 | >30 | >50 | >70 | >100 | >200nm
- Measuring activities over 5 years
- Contact with interested groups, like CAFE-Working group and VDI

MEASURING SITES

- Stockholm: Hornsgatan
- Dresden: Schlesischer Platz
- Prague: Strahovský tunnel
- Augsburg: Friedberger Straße

Three places are near busy roads, whereas the place in Augsburg is an urban background site.

Fig. 3 Measuring sites in Sweden, Germany and Czech Republic

FIRST RESULTS

- Ongoing measurements since 12-2006 in Dresden, at the other 3 places since 02-2007.
- · Same sampling and measuring system at all sites.
- Total Particle number concentration of UFP 330 to NOx in Dresden shows good correlation (29.1.-4.2.07): R² = 0.83 (Fig. 4).
- Comparing UFP 330 and reference instrument in the 6 size classes:
 In general, the correlation for the size classes K2 K5 is higher than for the largest and smallest one. The result is nearly independent on the concentration.
- Correlation between total number concentration UFP 330 (20 500 nm) and DMPS (20 – 400 nm) (24.1.- 15.2.07) is good: R² = 0.85.

Fig. 4 Particle number concentrations UFP 330 compared to NOx, half hour average, Dresden, one week: 29.01. – 4.2.2007

PARTNER

UBG, Radebeul

B TOPAS GmbH, Dresden

GSF, Neuherberg

d ITM, Stockholm University
CHMU, Prague
TSI GmbH, Aachen

^a Saxon: LfUG, Dresden

TSI GMD

CONTACT

Leadpartner
Saxon State Agency for Environment and Geology
Section 22, Air Quality
Holger.Gerwig@smul.sachsen.de

With the contribution of the LIFE financial instrument of the European Community: LIFE04 ENV/D/000054

CONFERENCE

Ultrafine Particles in Urban Air Final Conference EU-Project UFIPOLNET

23. - 24. Oct 2007 Dresden

Registration: early 20-Jul-2007, late 22-Sep-2007

www.ufipolnet.eu