

Modelling PMx-Emissions and – Concentrations of Streets for Environmental Impact Assessments and Action Plans

Dr. rer.nat. Ingo Düring (ingo.duering@lohmeyer.de)

- 1. Modelling PM10, PM2.5 or ultra fine particles (UFP)?
- 2. Problems in the case of modelling particles
- 3. Exhaust and non-exhaust particle emissions
- 4. PMx emission data
- 5. Dispersion modelling in the case of environmental impact assessments and action plans
- 6. Open questions

22. BlmSchV (2007):

Presently limit values exist for PM10 only (not for PM2.5 or UFP)

PM10- emissions and -concentrations are needed

CAFE position paper for future assessment:

- PM2.5 will be the important particle size
- Coarse mode (PM2.5-10) ditto relevant for human health
- Presently not enough knowledge to limit PM1 or UFP

Problems in the case of PM- modelling

In the case of atmospheric aerosols there is a lack of knowledge concerning

- emissions (sources)
- dispersion (transmissions)
- convertion (chemical, physical)
- elimination (sinks)

Various PM-sources are not or only insufficiently known:

- Agricultural activities, construction activities, vehicle induced re-suspension
- Wind induced re-suspension over natural open country or in urban areas
- Biological particles

Quantity and composition of PM-emissions, arising from combustion, are less known, as the classic pollutants

Primary PMx-emissions from vehicles

Exhaust emissions (refer to mass):

- Emission factor handbook HBEFa2.1 (UBA, 2004)
- 100% in PM1
- Depends on so called ,,traffic situations"
- differentiates vehicle classes, vehicle engine concept etc.

No emission factors for speed limit 30 km/h available

An official databank is not available

There exist emission-factors for abraision (tyres, brakes, cluches, road surface) in different international databanks:

- e.g. CORINAIR (EMEP)
- e.g. RAINS (IIASA)

but

Uncertainties and scattering are large, emission-factors often differ significantly from databank to databank

Re-suspension lacks completely

Proposed non-exhaust emission factors (Düring et al., 2004)

	l	Percentage	_	Emission factor [mg/km veh]	
Traffic	Speed-	constant	Percentage		
situation	limit	speed driving			trucks
(according to [2])	[km/h]	(acc. to [2]) [%]	(acc. to [2]) [%]		
AB>120				22	200
AB_120	120			22	200
AB_100	100			22	200
AB_80	80			22	200
AB_60	60			22	200
AB_StGo				22	200
A01	100	60	1	22	200
A02	100	53	1	22	200
A03	100	28	1	22	200
IO_HVS>50	60	46	1	22	200
Tunnel AB_100	100			10	200
Tunnel AB_80	80			10	200
Tunnel AB_60	60			10	200
Tunnel	60	46	1	10	200
IO_HVS>50					
HVS1	50	46	1	22	200
HVS2	50	52	1	30	300
HVS3	50	44	7	40	380
LSA1	50	44	7	40	380
HVS4	50	37	14	50	450
LSA2	50	32	20	60	600
LSA3	50	28	26	90	800
IO_Kern	50	23	33	90	800
IO_NS_dicht	50	32	5	90	800

PM10-emissionfactors

Annual mean

(good road surface conditions)

- strong influence of trucks (ca. factor 10)
 - no significant influence of vehicle speed
 - strong influence of traffic situation (traffic flow)

year 2007, 10% trucks

Special cases:

Speed limit (SL) of 30km/h in the case of regular traffic flow adapted from LfU Bayern (2003, WIME-Project):

EFact (exhaust) for SL30 = 0.5 * EFact (exhaust) für SL50 EFact (non-exhaust) unmodified

Bad road surface conditions (RSC)

EFact (exhaust) unmodified EFact (non-exhaust) bad RSC = 3.6 * EFact (non-exhaust) good RSC

Regional background

Dispersion modelling (2)

Common (cost reduced) procedure:

- Regional background from measured data
- Urban background from measured data
- Determination of hot-spots by means of screening
- Detailed calculation of the hot-spot additional concentration by means of microscale flow- and dispersion modell
- use of PM10 (because of limit values)
- particle conversion in local (street canyon) contribution is neglected
- secondary particle formation in local contribution is neglected
- deposition in local contribution is neglected

Modelling of local contribution particle concentration like a gas

Common (low cost) procedure

Dispersion modelling (3)

Advanced procedure:

- Regional background from measured data
- Urban background from modelling
- Determination of hot-spots by means of screening
- Detailed calculation of the hot-spot concentrations by means of microscale flow- and dispersion modell
 - use of PM10 (because of limit values)
 - particle conversion is neglected
 - secundary particle formation is neglected
 - depositions in local contribution is neglected

z.B. AUSTAL2000, LASAT, PROKAS, IMMIS, MISKAM

Advanced procedere

Dispersion modelling (4)

Complex procedure:

- Regional background from European scale modelling
- Urban background from modelling
- Determination of hot-spots by means of screening
- Detailed calculation of the hot-spot concentrations by means of microscale flow- and dispersion modell
 - secondary particle formation in background is not neglected
 - deposition is not neglected

e.g. REM-CALGRID+MICRO-CALGRID + AUSTAL2000

High demand of input data, problems of accuracy because of partly insufficient european emission database

Comparison Measurement-Modelling (PROKAS/MISKAM)

Open questions (vehicle-non exhaust emission)

- Influence of state of the street surface and -material on PM10-emission
 → new results FE 02.0265/2005/LRB (BASt) by end of 2007
- Influence of vehicle speed on PM10-emission
 → new results FE 02.0265/2005/LRB (BASt) by end of 2007; FE 77.486/2006 (BASt) by end of 2008
- Influence of meteorology on PM10-emission → new results FE 02.0265/2005/LRB (BASt) by end of 2007
- Influence of sloop of the road on PM10-emission
- Influence of traffic volume on PM10-emission-factor
- Influence of share of Stop&Go on PM10-emission-factor
- Share of the emissions on the size-distribution PM1/PM2.5/PM10

Open questions (dispersion in city)

- Influence deposition?
- Interaction of the particles among each other
- Interaction of the particles with meteorology (moisture, rain, wind etc.)

Thank you for your attention