

Modelling ultrafine particles in urban environments

Matthias Ketzel, Ruwim Berkowicz, Peter Wåhlin and Finn Palmgren National Environmental Research Institute, Roskilde, Denmark

Outline

• Introduction

- air pollution modelling
- challenges for ultrafine particles:
- Emission factors
 - Temperature dependence
- Transformation processes
 - time scale analysis
- Applications / results
 - street scale => OSPM
 - urban scale => MAT
- Conclusions

Air pollution modelling ...

well understood and modelled for pollutants as NOx NO2 CO ... and for all scales (street-urban-regional-global)

Danish Operational Street Pollution Model: OSPM

- Berkowicz et al. 198x ...2007
- semi-empirical model (plume + box), fast, hour by hour
- worldwide used (incl. IfT Leipzig, soon NRW ...)

(depending on wind direction)

ospm.dmu.dk

Modelling NOx at kerbside

background subtracted

• OSPM and emission factors from inverse modelling

modelled

measured

. .

Air pollution modelling ...

The two C's (challenges)

well understood and modelled for pollutants as NOx NO2 CO ... and for all scales (street-urban-regional-global)

Challenge 1: emissions

- for PM: substantial part of the emissions comes from nonexhaust:
- for PNC: formation during dilution, temperature dependence
- use of "effective emissions"

need for field studies to estimate the emissions at: road tunnel, street canyon, highway, etc.
using: NOx / C as tracer or 'inverse' modelling

Traffic Exhaust Particles

• 90% of the particle number formed by nucleation followed by condensational growth during dilution

(Kittelson et al. 1999, Burtscher 2001)

Average weekly profile of size distribution, Difference Street - background period 15-05 to 23-11-2001 ca. 12 weeks of data (1h averages)

- **II** continuous measurements
- III simultaneous measurements at background

night time shift to smaller sizes

diesel taxi ??nucleation ?!

time ('hour of the week')

Ketzel et al. 2003 Atmosph. Env. 37, 2735

Factor Analysis

- Average weekly variation of
 - NOx
 - CO

Strength of Mode 1-3(all corrected for background !)

Possible Solution:

- Factor 1: Mode 1+2; NOx
- Factor 2: Mode 1+3; NOx
- Factor 3: NOx; CO

Ambient temperature influences emission profile

Ratios between particle number concentration (versus size) and the NOx concentration at HCAB (street station).

NERI Technical report no. 460. (2003)

2007

Temperature dependent Emissions

National Environmental Research Institute, University of Aarhus

Emission factors from field studies

PAPER IV)

National Environmental Research Institute, University of Aarhus

2007

Challenge 2: transformation processes

Schematics of a urban particle size distribution with major sources and transformation processes

<u>i sé á</u>

Atmospheric Aerosol Processes Effect on number and mass Concentrations

Time scales for various processes

$$\tau_{process X} = \left| \frac{C}{\dot{C}} \right| \quad ; \quad \dot{C} = \frac{\partial C}{\partial t} \bigg|_{process X}$$

$$\tau_{dilution, plume}(t) = N(t) / \left| \frac{dN}{dt} \right| \cong \frac{D_R}{\dot{D}_R} + \frac{N_b}{N_E - N_b} \cdot \frac{D_R^2}{\dot{D}_R}$$

$$\frac{\partial N}{\partial t}\Big|_{coag} = -\frac{1}{2} \sum_{i} \sum_{j} K_{ij} N_{i} N_{j}$$

$$\tau_{depo} = \frac{H_m}{v_d}$$

?? Which processes are important to model ??
- depends on metric: number (PNC), size distribution (PSD), mass (PM)

- depends on scale / location

Application street scale - OSPM

Ì

Modelling at kebside for NOx and total particle number OSPM and emission factors from inverse mode ²⁰/_{1:1} <u>NOx_Str_Imod</u>

Temperature dependent Emissions

OSPM for NOx and PM10 at JGTV, 2003

urban scale – multi-plume model (MAT)

UFIPOLNET conference - 24 October • 2007

westerly winds: LVBY=background

Modelling of the urban background

- 'multi-plume' model for vertical dispersion
- background from measurements
- emission factor + size distrib.
 from kerbside measurements
- sectional model for aerosol dynamics including
- processes modelled:
 - background
 - emission
 - vertical dilution
 - deposition
 - coagulation
 - condensation

Main Conclusions:

- particle emission factors and size distribution estimated
- time scale analysis
- street level:
 - in general very high correlation particle number NOx
 - dilution is the dominant process
 - coagulation is too slow to alter the particle size distribution
 - OSPM (without particle dynamics) can be applied also for particle number using temperature depending emission factors
- urban scale:
 - the two L's
 - 15-30% reduction in particle number compared to NOx
 - shift of particle size distribution to larger sizes
 - Multi-plume Aerosol dynamics and Transport (MAT) model is able to reproduce this

Acknowledgements

Co-operation

- SMHI / ITM Lars, Christer
- Lund Aerosol Group (Adam, Erik)
- Germany: IfT Leipzig, Büro Lohmeyer
- NERI Particle + Monitor Group

Funding from

- Danish EPA
- Danish Research Council