

Health effects of inhaled ultrafine particles in the lungs and secondary target organs like brain and heart.

Wolfgang G. Kreyling, Manuela Semmler-Behnke

*GSF – National Research Center for Environment & Health Institute for Inhalation Biology Focus Network: Aerosols and Health D-85758 Neuherberg / Munich, Germany

Kreyling@gsf.de; www.gsf.de/ihb; http://www.gsf.de/neu/aerosols;

- Translocation and accumulation of nanoparticles (NP) in secondary target organs of rats after inhalation of
 - iridium (Ir); macroscopic view
 - elemental carbon (EC); macroscopic view
 - titanium dioxide (TiO₂) NP; microscopic view
- Systematic studies in rats on the effect of NP parameters on systemic translocation and secondary target organ accumulation
- Toxicology: biological response to NP surface area

Nanoparticle (NP) translocation into circulation

Ventilation-inhalation system of Ir-NP

Intubation ventilation

Nose-only inhalation

Intra-tracheal instillation

Systemic translocation of nanoparticles towards secondary target organs

WKY rat, ¹⁹²Ir NP, 1 hr exposure 15 nm CMD, 10^7 cm⁻³, 0.2 mg/m³

Long-term translocation kinetics same exposure

There is little but persistent translocation of Ir-NP towards secondary target organs

Systemic translocation of nanoparticles towards secondary target organs

WKY rat, 192 Ir NP, 1 hr exposure 15 nm CMD, 10^7 cm-3, 0.2 mg/m³

Systemic translocation of nanoparticles towards secondary target organs

Human dose estimate during continuous exposure applying rat translocation dynamics determined for Ir UFP:

(5 nm assumption)	
Estimated surface area	~10 ⁻¹ mm²
Retained UFP number in brain, heart	~10 ¹⁰ UFP/year
Translocated fraction to brain, heart	0.001 (of lung deposit)
Insoluble UFP fraction	0.1
Deposition fraction	0.3
Daily inhaled volume	10 m³
NC (UFP) (10 ⁵ p/cm ³)	10 ¹¹ p/m ³

Morphological characterisation of NP distribution in the lungs

Inhalation of TiQ₂ nanoparticles in rat lungs

Systemic translocation depends on NP material + particularly its surface

Toxicology: biological response to NP surface area

Surface area of NP is associated with inflammatory response

Influx of neutrophils (PMN) : indicator of inflammation Instillation of ultrafine UF-TiO₂ (20 nm) or fine F-TiO₂ (250 nm) into rat lungs

Oberdörster et al., HEI 2000

- Six months after a single 1-hour inhalation iridium NP were found at elevated number concentrations in 2nd target organs such as liver, spleen, heart, brain, etc.
- While 20 nm Ir and 25 nm carbon and 18 nm gold NP show similar translocated fractions, 22 nm TiO₂ NP seem to be much more translocated towards circulation
- Translocation and uptake in secondary target organs is strongly NP size dependent
- Biological inflammatory response is strongly driven by NP parameters like metals, organics and the NP surface area and its biologically active sites

Acknowledgements

GSF-Inst. f. Inhalation Biology: Manuela Semmler-Behnke Steffi Fertsch Winfried Möller Shinji Takenaka Tobias Stöger Holger Schulz

<u>University of Berne:</u> Marianne Geiser Peter Gehr **University of Essen:**

Günter Schmid

Wolfgang Brandau

University of Aachen:

Ulrich Simon

LM University of Munich:

Wolfgang Parak Ralph Sperling

<u>University of Rochester:</u> Günter Oberdörster

Thank you!

