
Can we use fixed ambient air monitors to estimate exposure to ultrafine particles?

J. Cyrys, M. Pitz, J. Heinrich, R. Rückerl and A. Peters

International Conference in Dresden "Ultrafine Particles in Urban Air" October 23-24, 2007

Two conclusions coming from recently published papers

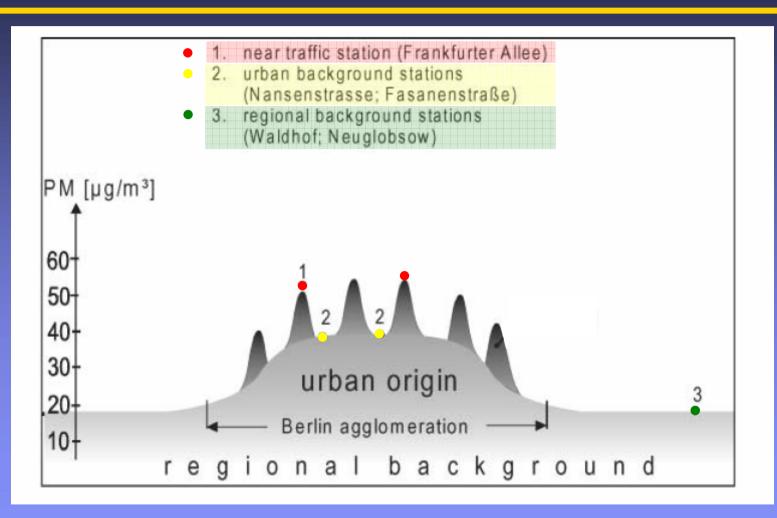
• The limited data available (on exposure to ultrafine particles) suggest that central monitoring site may give a somewhat worse proxy for human exposure to ultrafine particles than to fine particles (Pekkanen et al., 2004).

• Exposure assessment for ultrafine particles is still in its initial stage compared to exposure assessment for $PM_{2.5}$ or PM_{10} (Pusstinen et al., 2007).

Characteristics of ultrafine particles vs. fine particles (PM_{2.5}/PM₁₀)

Fine particles	Ultrafine particles (UFP)
Dominated by long-range transport	Mostly produced by local sources (traffic)
Have lifetimes in the order of days and are transported over long distances	Are rather unstable in the atmosphere and coagulate quickly
Very high temporal correlation and rather small spatial variability across an urban area	UFP are supposed to have a larger spatial and lower temporal variability than fine particles (Monn, 2001, Pekkanen and Kulmala, 2004)
Numerous studies with regard to the temporal and spatial variability of particle mass concentration	Studies on temporal and spatial variability of particle number concentration are rare

 Exposure assessment using a central monitoring site - some general remarks


 Temporal and spatial variability of ultrafine particles across a city area – results from different studies

Schematic horizontal profile of the ambient particles levels

Institute of Epidemiology

Lenschow et al., 2001

Criteria on the location of the sampling sites (EU 1996, EU 1999)

- Sampling sites directed to the protection of human health should be located:
- closed to the hot spots (where the highest concentrations are expected)
- at urban background (in areas which are representative for the general population)
 - The inlet sampling point should be between 1.5 m (the breathing zone) and 4 m above the ground

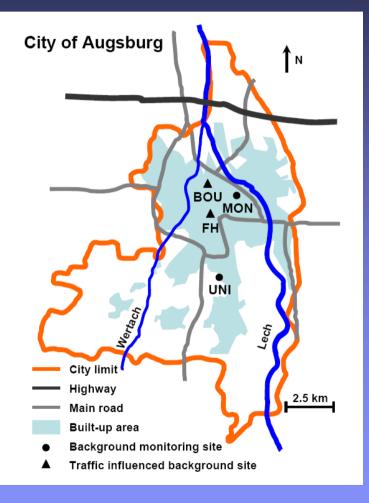
Dresden Nord

Institute of Epidemiology

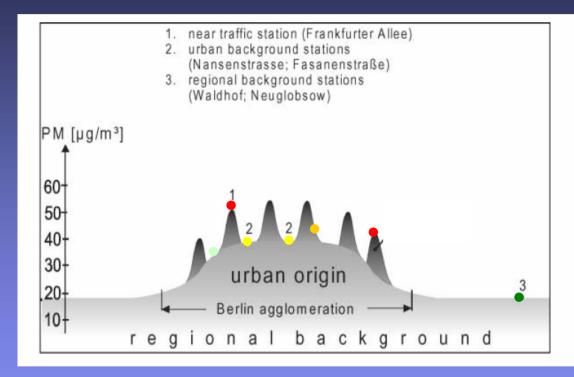
Augsburg

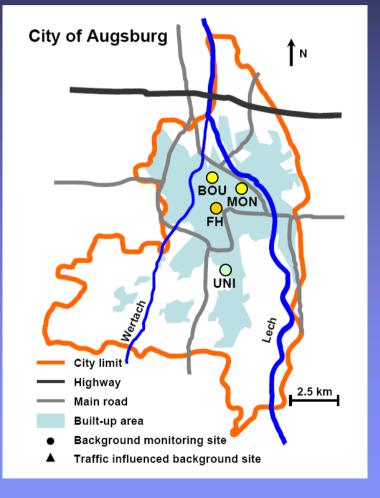
- Exposure assessment using a central monitoring site - some general remarks
- Temporal and spatial variability of ultrafine particles across a city area – results from different studies

Spatial and temporal variation of PNC – current knowledge


Buzorius et al. (1999)		Tuch et al. (2006)		
Helsinki	2 2	Leipzig	2 2	
Three sites in the vicinity major roads, one site 22 north-west of the city cer	km	Two sites (one backgrou and one traffic site (stree canyon))		
Correlation coefficients: 0.60 - 0.88		Correlation coefficients: 0.35 - 0.46		
Highest correlations betw the sites mostly affected traffic (>0.80)		The background site was a roof about 16 m above ground		

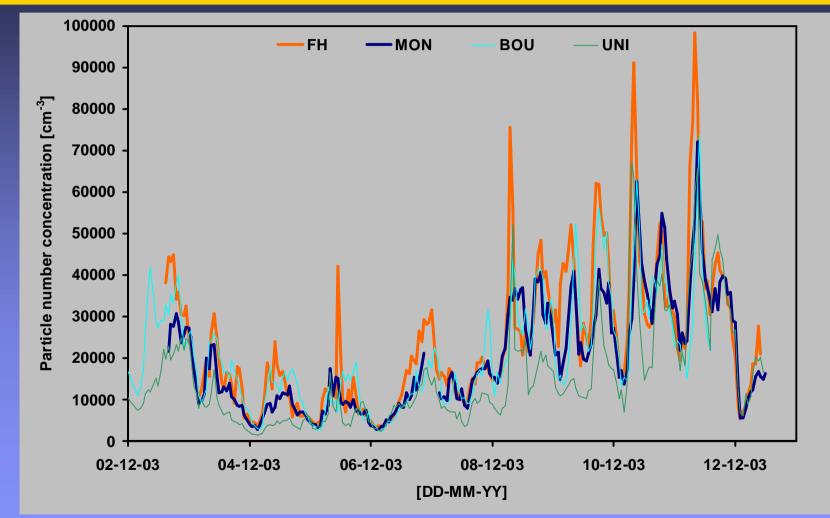
UFIPOLNET Spatial and temporal variation of PNC at fixed monitoring sites (Augsburg)


Two sampling periods:
1) winter period: Dec 2 to Dec 12, 2003
2) spring period: Apr 5 to May 12, 2004
Four background sites (bs): FH, MON, BOU, UNI
PNC measured by CPC


Institute of Epidemiology

Spatial and temporal variation of PNC at fixed monitoring sites (Augsburg)

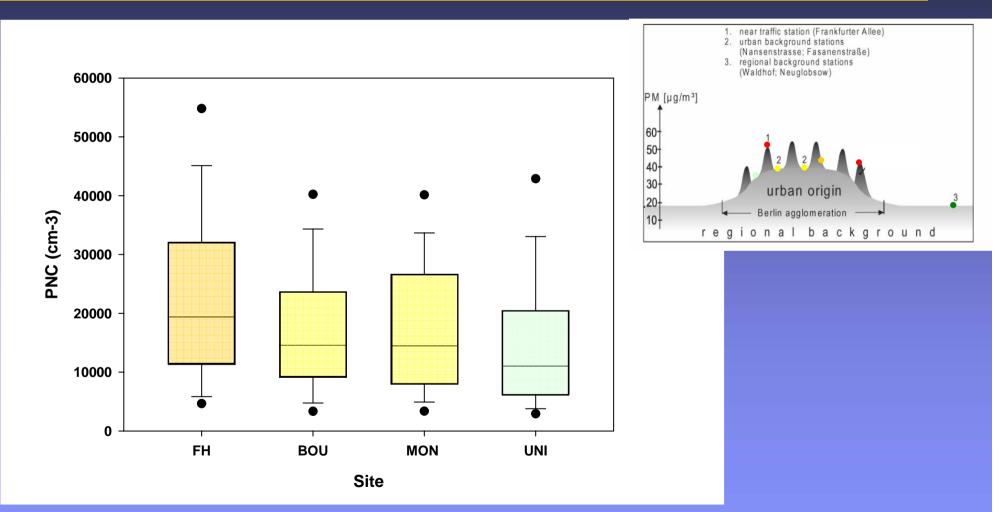
FH: traffic influenced urban bs MON, BOU: urban bs UNI: suburban bs



PNC at different monitoring sites during the winter period

Institute of Epidemiology

Temporal variability of PNC in Augsburg (winter period)


	MON	FH	BOU	UNI
MON	1	0.92 n=227	0.89 n=239	0.91 n=228
FH	0.93 n=9	1	0.84 n=236	0.88 n=236
BOU	0.89 n=10	0.87 n=9	1	0.77 n=252
UNI	1.00 n=9	0.95 n=9	0.89 n=10	1

Institute of Epidemiology

Spatial variability of PNC in Augsburg (winter period)

Institute of Epidemiology

RUPIOH study

Relationship between Ultrafine and fine Particulate matter in Indoor and

Outdoor air and respiratory Health

 Four cities: Amsterdam, Athens, Birmingham and Helsinki

• In each city:

- continuously measurements at a central monitoring site

- additional measurements in and directly outside approx. 35 homes

- only in one home

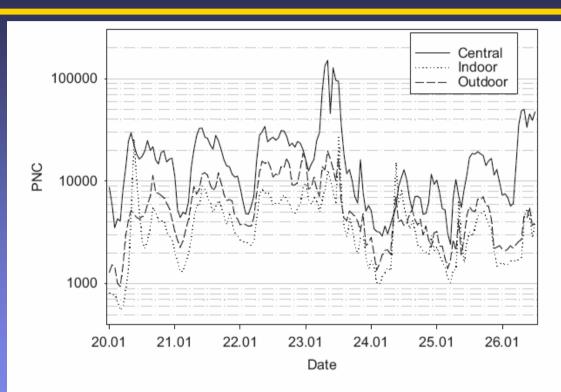
simultaneously

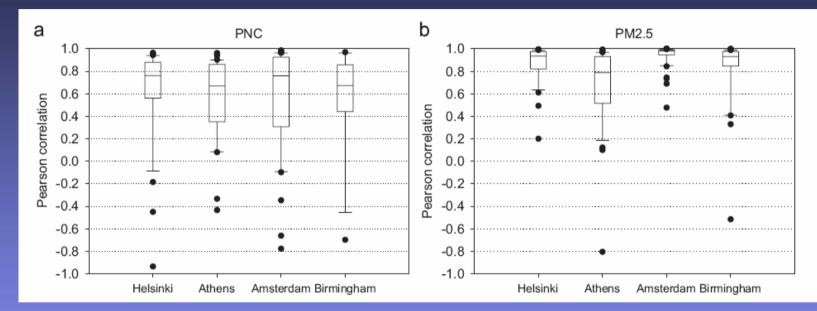
Map of the study area: Amsterdam

Puustinen et al., October 2007

est

RUPIOH study: spatial and temporal variation




Fig. 2. Example of PNC hourly concentrations in study outdoor site ID 49 for 1 week, in indoor, outdoor and central site. ID 49 was in Helsinki, an urban background site, measured during 20.01–26.01.2004. The residential outdoor/central site correlation was 0.89 and the ratio 0.37.

RUPIOH study: temporal variation

	Helsinki	Athens	Amsterdam	Birmingham
Number of homes	37	35	50	30
Study period	28.10.2002-23.02.2004	23.10.2002-25.03.2004	16.10.2002-23.02.2004	4.11.2002-10.03.2004
Inhabitants metropolitan area (10 ⁶)	1.0	3.2	1.1	2.6
Area (km ²)	745	440	324	902
Population density (km ⁻²)	1342	7628	3398	2882
Distance homes to central site (km) ^a	7.6 (2.5-34)	6 (0.7-18.8)	3.3 (0.3-9.5)	7.0 (0.9-29.7)
City centre sites ^b	6 (16%)	9 (26%)	31 (62%)	1 (3%)
Site type ^b	· · ·			
Background	32 (87%)	22 (63%)	28 (56%)	23 (77%)
Traffic	5 (13%)	13 (37%)	22 (44%)	7 (23%)
Traffic intensity (vehicles per day) ^a	952 (100-8 974)	5046 (100-44000)	6062 (100-23446)	2866 (100-19 821)
Canyon street ^b	3 (8%)	11 (31%)	12 (24%)	2 (7%)
Sampling height (m) ^a	3 (0-35)	6 (0-23)	5 (2-25)	2 (2-6)

Institute of Epidemiology

Puustinen et al., 2007

RUPIOH study: spatial variation

Table 2

Median of ambient particulate air pollution concentrations at central and residential sites in four European cities (October 2002-March 2004)

Pollutant	Location	Helsinki	Athens	Amsterdam	Birmingham
PNC (cm ⁻³)	Central	12490	20276	18 090	18787
	Residential	4507	15234	26 346	16109
$PM_{2.5}~(\mu gm^{-3})$	Central	7.5	22.6	16.5	8.7
	Residential	8.3	20.6	17.6	10.2
$PM_{10}~(\mu g~m^{-3})$	Central	13.1	51.7	26.9	17.1
	Residential	12.3	46.0	29.9	17.2
$PM_{10}\!\!-\!\!PM_{2.5}~(\mu g~m^{-3})$	Central	4.5	28.8	9.4	6.8
	Residential	3.6	23.2	10.9	7.6
Soot $(10^{-5} m^{-1})$	Central	1.3	3.5	1.9	1.3
	Residential	1.2	3.0	2.4	1.3

Conclusions: temporal variation

- PNC measured at a central site reflect well temporal variation near homes across urban areas, though less than for fine particles.
- Correlations with the central site were similar for background and traffic homes (RUPIOH study, data not shown).
- Using a central site in epidemiological time-series studies does not result in substantially larger measurement errors for PNC than for PM_{2.5} or PM₁₀.

Conclusions: spatial variation

- A fixed monitoring site could either over- or underestimate the absolute NC values over the urban areas, the differences for PM_{2.5} or PM₁₀ are smaller.
- It suggests that epidemiological studies assessing health effects related to long-term average exposure should not rely on one central monitoring site.
- To cover the spatial variability across the urban area other approaches should be considered: e.g. increasing the number of monitors or modeling of PNC.

