

Ultrafine particles - The missing link ?

Kaare Press-Kristensen Senior adviser, air quality The Danish Ecological Council karp@env.dtu.dk / (+45) 22 81 10 27

What causes excess mortality ?

- Excess mortality is 300-500 annual deaths among residents living alongside large roads in CPH (net excess: adjusted for income, NOx, noise etc.).
- PM_{2.5} from traffic <u>within</u> Copenhagen can explain about 20 of these premature deaths every year.
- What is the missing link how should we explain far the majority of the observed excess mortality ?

The right indicator ...

Pollution in nature versus H.C. Andersen' Boulevard

Relative index (Nature = 1)

Fine particles (PM_{2.5}) are an inappropriate indicator of pollution from local road traffic !

EC/BC and UFP are much better indicators of air pollution from local traffic ...

UFP as indicator in rush hour

Closed filters remove UFP

We need LEZ with filter requirements !

Suggested limit values

	Measurement	Limit Value
Soot particles	<i>Elementary carbon</i> as part of fine particles.	Yearly Average: 0.5 µg pr. m ³
Ultrafine particles ^{a)}	Number of particles larger than 0.02 micro- meters	Yearly Average: 7000 particles per cm ³ Hourly Average: 20,000 particles per cm ³

Publication: Clean air Copenhagen

Freely downloaded from:

http://www.winkas.dk/wkwebshop/vareoversigt.asp?kat=3&hkat=1 &shopid=851152&VareGruppe=12

Funded by:

The European Campaign: *Soot free for the climate*

& The European Commission: LIFE11 ENV/DE/495: Clean Air Europe

This project is co-funded by

The European Campaign: Soot free for the climate & The European Commission: LIFE11 ENV/DE/495: Clean Air Europe

a project by

co-financed by the EU's LIFE financial instrument

Winter in Copenhagen

Conclusion

- Fine particles only indicate regional pollution and are a very poor indicator of local traffic pollution

 the opposite is the case for UFP (EC/BC).
- Therefore UFP (EC/BC) should be used as indicator for local air pollution from traffic and estimated on a street level (relevant exposure studies).
- We need air quality limits for UFP (EC/BC).

UFP: A dangerous cocktail...

- Ultrafine particles have a high content of toxic soot.
 Their surfaces are coated with PAHs & heavy metals.
- Ultrafine particles are deposited in the finest parts of the lungs and transferred to the blood.
- Thereby ultrafine particles are a dangerous cocktail of toxic properties and a size allowing them to reach the most sensitive parts of the human organism.

When we open windows ...

Potentials of LEZ and CC

2015	Reference	I: Congestion charge	II: Low emission zone	III: I and II combined
ΡM ₁₀ (µg/m ³)	30.5	28.5	29.5	27.5
ΡΜ _{2.5} (µg/m ³)	14.5	14	13.5	13
PM _{0.1} (number/cm ³)	11,500	10,500	6000	5000
NO ₂ (µg/m ³)	51	47	< 40	< 36

The annual average of ultrafine particles can be reduced by 50 % by LEZ – but up to 90 % in the rush hour – reducing the exposure of the population significantly.

Quantify pollution sources

	PM_{10}		PM _{2.5}		PM _{0.1}		NO ₂	
	µg/m³	%	µg/m³	%	number/cm ³	%	µg/m³	%
Background pollution from outside the city	16	52	10	66.5	2500	18.5	9	16.5

Concentration on road level	31	100	15	100	13,500	100	55	100
					/			