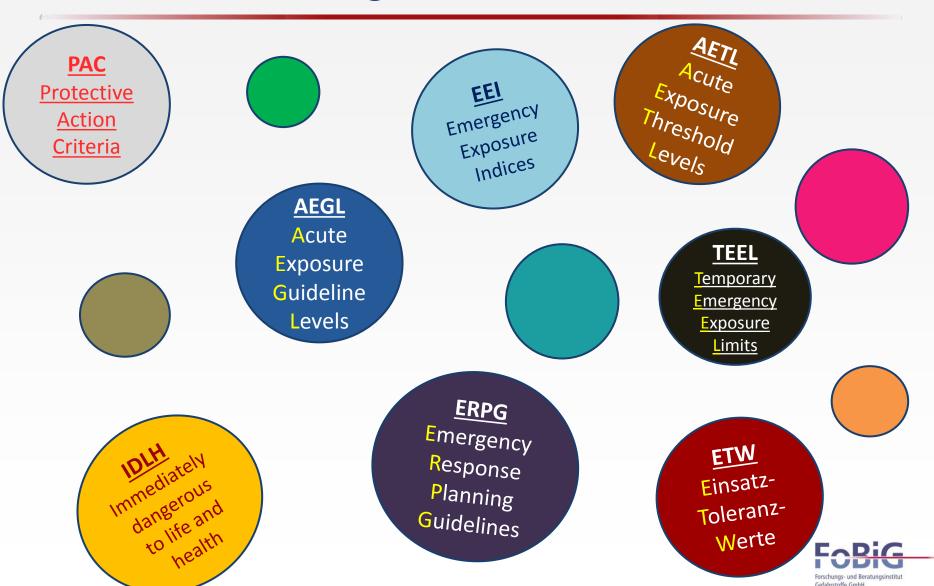
Konzentrationsleitwerte im Störfall 3.LfULG - Kolloquium Anlagensicherheit/Störfallvorsorge Dresden, 26.11.2015

Dr. Fritz Kalberlah
FoBiG, Forschungs- und Beratungsinstitut Gefahrstoffe GmbH
Freiburg
www.fobig.de

FoBiG - Das Thema Störfall


- Entwicklung von AEGL im Auftrag es Umweltbundesamts und in Kooperation mit der U.S.EPA
- **❖** Sonderaspekte: Krebserzeugende Stoffe und ihre Wirkung nach Einmalexposition im Auftrag von Nordrhein-Westfalen (LANUV)
- ❖ Trinkwassernotversorgung: Maßnahmehöchstwerte bei subakuter Aufnahme im Auftrag des Bundesamts BBK
- ❖ Litiumionenbatterien: Bewertung der freigesetzten Stoffe beim thermal runaway im Auftrag eines KfZ-Herstellers

Übersicht

- Störfallbeurteilungswerte eine bunte Vielfalt
- Vergleich Anmerkungen, Unterschiede, Prioritäten
- Definition AEGL-Werte
- Wie werden AEGL-Werte abgeleitet?
- Spezielle Themen: Schutz von Asthmatikern?
- Spezielle Themen: Krebs nach Einmalexposition?
- Ein Beispiel: Flusssäure
- Wann welche Werte?
- Ermutigung
- Weitere Informationen

Störfallbeurteilungswerte – eine bunte Vielfalt

Anmerkungen, Unterschiede, Priorität

Anmerkungen

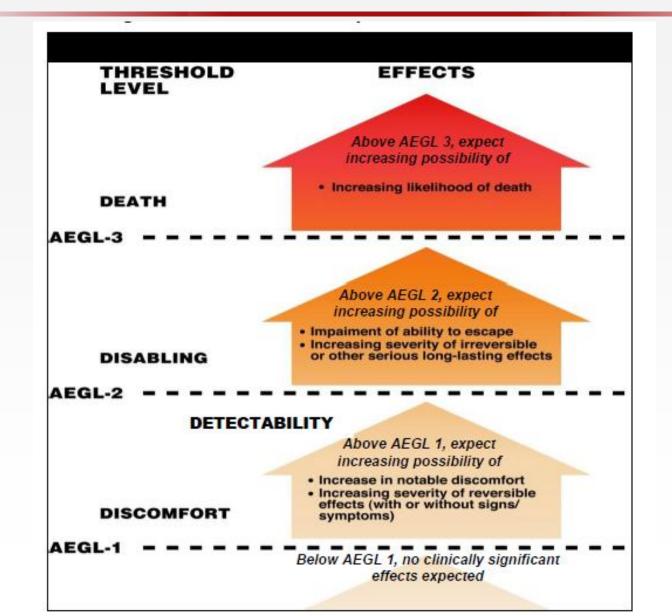
- → Überbegriff US: PAC
- → Gibt weitere
- → Vgl. Kurzzeitwerte Arbeitsplatz, aber nicht MAK/x

Unterschiede

- → Zeitdauer (von 10 Minuten bis 8 Stunden, je nach Wert)
- → Schutzniveau (von Wahrnehmung bis Übergang zu möglicherweise tödlichen Effekten)
- → Qualität (vorläufig grob oder umfassend validiert)

Priorität nach diesen Kriterien:

- → Best abgesichert und am breitesten aufgestellt: AEGL
- → was passt für Zeitraum?
- → Passt für Schutzniveau?
- → AEGL > ERPG > TEEL (andere oft älter, enger definiert und wenige)



Nähere Charakterisierung

Wert	Schweregrade	Zeithori-	Bemerkungen (Näheres:
(Bezeich-		zonte	vgl. Text)
nung)			
AEGL	3 (bei Überschreitung:	5	Transparente Dokumentation;
	nicht behindernd (non-	(10	Verwendung von
	disabling); behindernd	Min. bis	Extrapolationsfaktoren
	(disabling);	8 Std.)	
	lebensbedrohlich (lethal))		
IDLH	1 (schwer bis	1(30	vorgesehen zur
	lebensbedrohend)	Min.)	Atemschutzauswahl; knappe
			Stoffdokumentation; wenig
			differenzierte Methodik

AEGL-Schweregrade (aus: USAPHC)

Definition AEGL-Werte (1)

* AEGL-1:

AEGL-1 ist die luftgetragene Stoff-Konzentration (ausgedrückt in ppm oder mg/ m³), ab der vorhergesagt wird, dass die allgemeine Bevölkerung - einschließlich empfindlicher aber ausschließlich hyperempfindlicher Einzelpersonen - ein spürbares Unwohlsein erleiden kann. Luftgetragene Stoff-Konzentrationen unterhalb des AEGL-1-Wertes bedeuten Expositionshöhen, die leichte Geruchs-, Geschmacks- oder andere sensorische Reizungen hervorrufen können.

Definition AEGL-Werte (2)

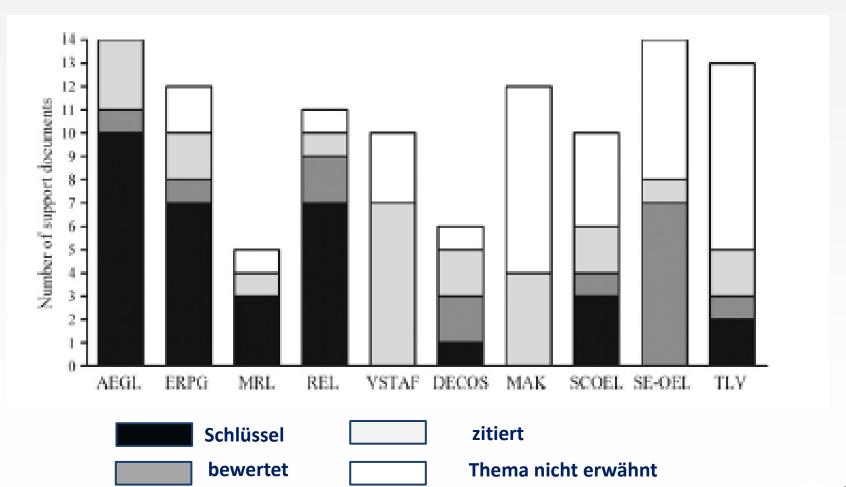
* AEGL-2:

AEGL-2 ist die luftgetragene Stoff-Konzentration (ausgedrückt in ppm oder mg/ m³), ab der vorhergesagt wird, dass die allgemeine Bevölkerung - einschließlich empfindlicher aber ausschließlich hyperempfindlicher Einzelpersonen - irreversible oder andere schwerwiegende, lang andauernde Gesundheitseffekte erleiden kann oderbei denen die Fähigkeit zur Flucht beeinträchtigt sein kann. Luftgetragene Stoff-Konzentrationen unterhalb des AEGL-2aber oberhalb des AEGL-1-Wertes bedeuten Expositionshöhen, die spürbares Unwohlsein hervorrufen können.

Definition AEGL-Werte (3)

* AEGL-3:

AEGL-3 ist die luftgetragene Stoff-Konzentration (ausgedrückt in ppm oder mg/ m³), ab der vorhergesagt wird, dass die allgemeine Bevölkerung - einschließlich empfindlicher aber ausschließlich hyperempfindlicher Einzelpersonen - lebensbedrohliche oder tödliche Gesundheitseffekte erleiden kann. Luftgetragene Stoff-Konzentrationen unterhalb des AEGL-3- aber oberhalb des AEGL-2-Wertes bedeuten Expositionshöhen, die irreversible oder andere schwerwiegende, lang andauernde Gesundheitseffekte hervorrufen oder die Fähigkeit zur Flucht beeinträchtigt sein können.

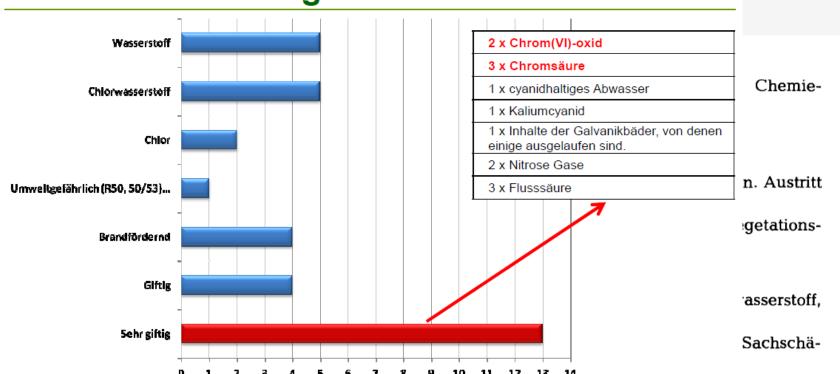

Wie werden AEGL-Werte abgeleitet?

- Oft nicht für alle Zeitpunkte und Schweregrade qualifizierte Daten vorhanden
- Dann Extrapolation:
 Zeitextrapolation, Interspeziesextrapolation,
 Intraspeziesextrapolation, Modifikationsfaktorem
- U.S.EPA liefert dafür Standing Operation Procedures (SOP)
- Übergreifendes Gremium (National Advisory Committee der National Academy of Science)
- Mehrstufige Bestätigung: Draft, Proposed, Interim, Final (Bereits ab "Proposed" ausreichende Qualität)

Sonderfragen: Werden Asthmatiker ausreichend geschützt?

Quelle: Johansson et al., 2012

Krebserzeugende Wirkung nach Einmalexposition? – Ergebnisse aus einem LANUV-Projekt


Störfallbeurteilungswerte für kanzerogene Wirkungen sind niedriger als AEGL2-Werte, kanzerogene Wirkungen sind somit bewertungsrelevant für Kurzzeitexposition	6 von 16 Stoffen (Butadien, 1,2- Dibromethan, Dimethylcarbamoyl- chlorid, Epichlorhydrin, 4-Methyl-m- phenylendiamin, Vinylchlorid)
Störfallbeurteilungswerte auf Basis kanzerogener und nicht kanzerogener Wirkung liegen im selben Konzentrationsbereich	4 von 16 Stoffen (Benzotrichlorid, Bis(chlormethylether), Hydrazin, 2- Methylaziridin)
Störfallbeurteilungswerte für kanzerogene Wirkungen sind höher als AEGL2-Werte, nicht kanzerogene Wirkungen sind somit bewertungsrelevant für Kurzzeitexposition	5 von 16 Stoffen (Acrylnitril, Benzylchlorid, Dimethylsulfat, Formaldehyd, 4,4'-Methylendianilin)
Wegen ungenügender Daten kein Vergleich möglich	1 von 16 Stoffen (Diethylsulfat)

Relevanz des Beispiels

An den meldepflichtigen Ereignissen beteiligte Stoffe

In der Abbildung darf "Anzahl der beteiligten Gefahrstoffe" nicht mit "Anzahl der Ereignisse" gleichgesetzt werden, da bei einzelnen Ereignissen mehrere Stoffe beteiligt sein können.

Die angegebenen Einstufungen der beteiligten Stoffe wurde den Datenblättern der Ereignismeldungen entnommen.

Flusssäure – die Eigenschaften

Flusssäure	⊣F • aq	
異		Molmasse 20,006 g/mol (HF)
Fluss- säure	In speziellen Kunststoffbehältern aufbewahren, greift Glas an! Farblose Flüssigkeit	AGW (HF) 1 ml/m³ (TRGS 900) Dichte (48%) 1,16 g/cm³ Wasserlöslichkeit in jedem Verhältnis mischbar
Piktogramme GHS 05 GHS 06 Gefahr	Gefahrenklassen + Kategorie Akute Toxizität oral 2 Akute Toxizität dermal 1 Akute Toxizität inhalativ 2 Ätz/Reizwirkung auf die Haut 1A	HP-Sätze (siehe Hinweis) H 300, 310, 314, 330 P 260, 280.1,2,3,4,6,7, 302+352, 301+330+331, 304+340, 305+351+338, 309+310, 403+233, 405 Entsorgung besondere Hinweise
	Deutscher Name	Englischer Name
CAS 7664-39-3	Flusssäure	Hydrofluoric acid

Beispiel Flusssäure

Klasse	10 min	30 min	1 h	4 h	8 h	Endpunkt
AEGL-1	0,8 mg/m ³ (1,0 ppm)	Schwellenwert für Entzündungsreaktionen in der menschlichen Lunge.				
AEGL-2	78 mg/m³ (95 ppm)	28 mg/m³ (34 ppm)	20 mg/m³ (24 ppm)	9,8 mg/m ³ (12 ppm)	9,8 mg/m ³ (12 ppm)	NOAEL für Effekte in der Lunge kanülierter Ratten, sensorische Reizung in Hunden
AEGL-3	139 mg/m ³ (170 ppm)	51 mg/m³ (62 ppm)	36 mg/m³ (44 ppm)	18 mg/m³ (22 ppm)	18 mg/m ³ (22 ppm)	Lethalitätsschwellenwert in kanülierten Ratten, Lethalitätsschwellenwert in Mäusen

Geruchsschwelle: 0,016- 0,11 mg/m³, wahrnehmbar

ETW-1;ETW-4 aus AEGL übernommen (AEGL-2 Niveau)

ERPG (1h), ERPG1,2,3 = 2 ppm, 20 ppm, 50 ppm

EEL (1h, militärischer Bereich) = 8 ppm

IDLH (30 min) = 30 ppm

Arbeitsplatzgrenzwert: 0,8 mg/m³ (8h chronisch)

KZW (Arbeitsplatz): nächste Folie

Flusssäure- Arbeitsplatzkurzzeitwerte

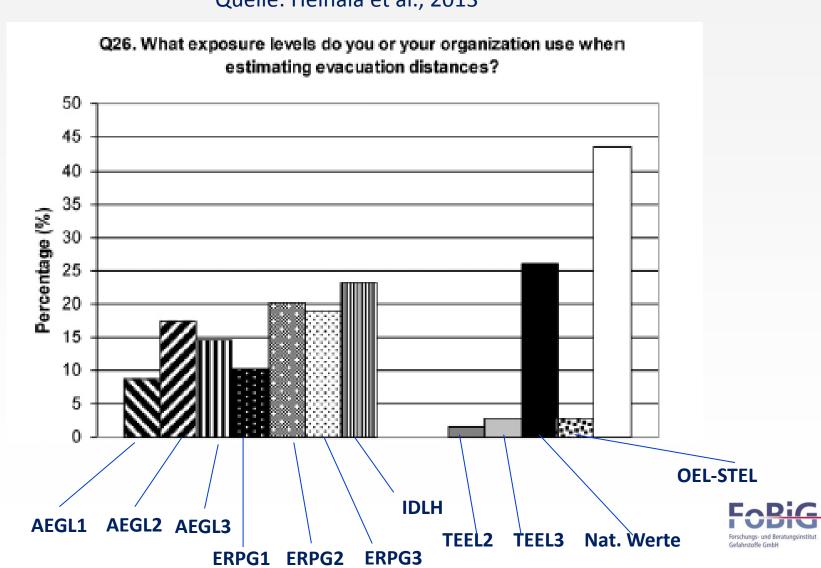
Substance Hydrogen fluoride (as F)
CAS No. 7664-39-3

	Limit value - Short term		
	ppm	mg/m³	
Australia	3 (1)	2,6 (1)	
Austria	3	2,5	
Belgium	3	2,5	
Canada - Ontario	2 (1)		
Canada - Québec	3 (1)	2,6 (1)	
Denmark	3,6	3	
European Union	3	2,5	
France	3	2,5	
Germany (AGS)	2 (1)	1,66 (1)	
Germany (DFG)	2	1,66	
Hungary		2,5	
Ireland	3 (1)	2,5 (1)	
Italy	3	2,5	
Japan			
The Netherlands		1	
USA - NIOSH	6 (1)	5 (1)	

AEGL-2 (10 Minuten):

95 ppm

AEGL-2 (1h):


24 ppm

Welche Werte werden verwendet?

Quelle: Heinälä et al., 2013

Informationen zu den aktuellen Werten

https://orise.orau.gov/emi/scapa/chem-pacs-teels/aeglserpgs-teels.htm

Ermutigung

- Bei gravierenden Unterschieden vorliegender Störfallbeurteilungswerte Qualität prüfen (nicht bei einem Faktor von ≈ 2), ggf. Priorität auf AEGL-Konzept
- Stoffe mit TEEL, IDLH oder alten ETW in der Bewertung prüfen
- Ausgangsbasis Arbeitsplatz in der Regel (auch mit Extrapolationsfaktor) ungeeignet
- Sonderfälle anschauen (z.B. Asthmatiker, gentoxische Kanzerogene)

Vielen Dank für Ihre Aufmerksamkeit!

